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The antiferromagnetic Ising model on a checkerboard lattice has an ice-like ground state manifold with
extensive degeneracy. and, to leading ordekjndeconfined spinon excitations. We explore the role of cyclic
exchange arising at ord<.=lt5y/JZ on the ice states and their associated spinon excitations. By mapping the
original problem onto an equivalent quantum six-vertex model, we identify three different phases as a function
of the chemical potential for flippable plaguettes—a phase with long range Néel order and confined spinon
excitations, a nonmagnetic state of resonating square plaquettes, and a quasicollinear phase with gapped but
deconfined spinon excitations. The relevance of the results to the square-lattice quantum dimer model is also
discussed.
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The past decade has seen a great renaissance in the stdegromagnetic interactiong, J,,>0, in the limitJ,>J,,
of frustrated quantum spin systems. On the experimental ;
front, advances in the synthesis of magnetic oxides have X . -
given rise to a great weal}t/h of new frustrgted materials with H= JZE SZSZ"L _21/2 CERE SD' 1)
highly unusual and interesting properties. And, at the same w w
time, highly frustrated models have become a favorite playHere the sunE;, runs over the bonds of the 2D pyrochlore
ground of theorists seeking to understand unconventiongy; checkerboard lattice, shown in Figaj. In the Ising limit,
phase transitions and excitations. , _ Jy=0, this model has an extensive ground state
Recently, it was proposed that the geometric frustratiorjegeneracy—every state with exactly two up and two down
present on the pyrochlore lattice could give rise to fractionakpins per tetrahedrofeross linked squajés a ground state.
charges in two or three dimensiohs) a physically realistic  For historical reasons, this is known as the “ice rules” con-
model based on strong nearest neighbor repulsion close raint. Topologically, “ice” states have the structure of
commensurate filling.The charge ordering problem consid- closely packed loops of up and down spins, and are separated

ered in Ref. 1 is classically equivalent to one of Ising anti-py 4 gapy, from the lowest lying excited state. Flipping any
ferromagnetism, and in this paper we consider the simplest

possible test case for these ideas, XXz Heisenberg model

on a checkerboar@D pyrochlorg lattice. We proceed by AN ININAIN > >
mapping this model onto an equivalent, quantum six-vertex :: :: :: :: :: ADYOADYOA
model (Q6VM), and describe the nature of the ground state NPANPAN VANV N o T8 Wl e T
and low lying spin excitations of this model as a function of LINZ TNV NV TN AN Y 9 A 9 Y 9 A - Y
a control parameteV, which acts as a chemical potential for SOXOX YN ADYOA v ¥
those “flippable plaquettes” accessible to cyclic exchange. NI NGNS > NG .

We identify three different ground states, a phase with :: :: }: :: }: YOA Y

long range Néel order, a nonmagnetic state of resonating ‘7’.‘!.‘7“!.‘7
square plaquettes, and a partially disordered phase of “iso- LINININGININ
lated states” with extremely large ground state degeneracy, NN N NN
referred to as the “quasicollinear” phase below. Because of @) )
the anisotropy of the model, all spin excitations are gapped.

It is possible to identify the lowest lying excitations of the i 1 (color online (a) The checkerboard lattice on which the
Neel phase as spin waves, and those of the quasicolline@¥e states, andb) the square lattice on which the states of the
phase as deconfined spinons. We also identify the specialx-vertex model are defined. Any Ising state obeying the ice rules,
role of the isolated states in supporting fractional excitationse g., that shown ira), is equivalent tab) six-vertex model con-
Many of these results are also relevant to the much studiefiguration. In the state shown, the upper left corner has Néel order,
square lattice quantum dimer mod€DM).3 while the lower right corner has collinear order. Flippable

Model and mapping onto Q6VM: We take as a startingplaquettes are denoted with circles. In the case of the six-vertex
point the spin-1/2 anisotropic Heisenberg model with anti-model, these have a definite sense of rotation.
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given down spin connects two adjacent loops of up spins,
creating two T-junction” like topological defectgspinons,
which propagate independentt§.The pyrochlore(checker-
board lattice is bipartite in tetrahedra. Spinons are created in
A and B sublattice pairs, and move so as to preserve tetrahe-
dron sublattice.

By drawing an arrow from the center of A to B sublattice
tetrahedra where they share an up spin, and from B to A

Ve  plaquette  RK quasi-collinear

where they share a down spin, one can show that the many } | .

ground states of the Ising model on a checkerboard lattice are X2  _p374 X2 1 ~x 2N Vit

in exact, one-to-one correspondence with the states of the

classicalsix vertex mode{6VM),>8 widely studied as a 2D FIG. 2. (Color onling The phase diagram of the model as a

analog of water ice. From this mapping, we know tfsatthe  function of V/t. The Néel phase breaks the point group, while the
ground state manifold of the Ising model grows W& plaquette phase breaks the translational symmetry. The Rokhsar-
o« (4/3)°N4 whereN is the number lattice sitésand (b) all ~ Kivelson point is marked RK.
correlation functions decay algebraicdlly.

Up to this point, our analysis contains only classical sta-
tistical mechanics and simple topological arguments. Quar@s seen in Fig.(b). We note that, for a system with periodic
tum mechanics reenters the problem when we consider Boundary conditions, the net flux of vertex arrows through
small but finiteJ,,<J,. In this case, the ice states are noany given horizontal or vertical cut defines a set of winding
longer eigenstates. Short lived virtual excitations enable theumbers which are conserved by the Hamiltonian
system to tunnel between different ice state configurations Our approach to determining the different phases of the
wherever pairs of upspins and downspins occur diagonallyHamiltonian(3) is the numerical diagonalization of clusters
opposite one another on one of the empty square plaquettegth periodic boundary conditions of up to 64 spins, within
of the checkerboard latticeThe allowed reconfigurations of the ice rules manifold of states, supplemented with topologi-
these “flippable plaguettes” can be described within degencal and symmetry arguments. Details of these, together with

erate perturbation theory by the effective Hamiltonian further analysis of the related fermionic charge-ordering
2 problem will be discussed further in separate
Hona== "2 (SSSiS+SSS;S),  (2)  Ppublications:®™> . _
J. 0 Phase diagram: We first consider the nature of the ground

state as a function the chemical potential for flippable
plaquettesy. Our results are summarized in the phase dia-

wise or anticlockwisg of an empty plaquett. : . : .
. gram Fig. 2, and the numerical evidence for each phase dis-
In terms of the 6VM representation, E(R) acts on a cussed below.

plaguette where four arrows are joined nose to tail, so as to Negative values ofV favor states with flippable

invert all of the arrows and change the sense of rotation of . .

the plaquette(cf. Ref. 10. The qgantum dynamics in the plaguettes. The state with the greatest possible number of

; C flippable plaquettes is the Néel state, and this must be the

Q6VM we consider are directly analogous to the resonance - ie state fol/— —=. The Néel state is twofold degen-
of dimers in the QDM studied as an simplified model of a g . ST - . €9
resonating valence bond statezormally, in fact, the Hamil- erate in the thermodynamic limit. For finidé/t, in a finite

i ' y size system, quantum fluctuations lift this degeneracy, as

tonian is exactly the same, although the Hilbert space ORcn in the low-energy spectrum of the Q6\(FIg. 3). We

which it acts is different. And, as in the QDM, we anticipate find a single phase fov=<-0.&, which we identify as the

that quantum effects will in general select a ground state Witr&I . . . . .

- . ) éel phase. Both the symmetric and antisymmetric combi-

finite degeneracy from the vast manifold of classically al- . f 1h breaki Néel d

lowed ice states nations of the two symmetry-breaking. Néel ground states
' are visible in the spectrum, marked “GS” arldé’el,” respec-

roﬁfefnuiﬁ’\]ghﬁrze Qsov?/gye??gglzg? tgnsetzgg st(r:]aele dilfrf]eEZﬁt tively. At a value ofV~-0.3, a third energy level, marked
P Xy y “Plag” crosses the first excitatioiN&el.” We interpret this as

possible phases of the model it is useful to introduce a fur-

ther control parameter. A suitable control parameter for th evidence for a quantum phase transition Into a resonating
QDM s a diagonal term which counts the number of dimer laguette phase, discussed below. From finite size scaling of

which can resonate in any given dimer covering. By direc (he spectrumFig. 4 we estimate the critical value to be

i ; . =-0.3727 in the thermodynamic limit. As the competing
Cc
analogy, we introduce a dlago_nal interactinio the Q6VM Néel and plaquette order parameters break lattice symmetries
which counts the number of flippable plaquettes

in very different ways, the transition between them is pre-
- _ sumably of first order.
Tt % M o X+ oXOD =t o XOl+o XD, We find a single phase extending from —Gs3V<t, in-
3) cluding the XXZ point V=0. This phase terminates in the
special high symmetry point=t for which the Hamiltonian
where the|©) and |0) states represent squares with the(3) of the Q6VM can be written as a sum of projection op-
respective circular arrow configuration on the square edgesrators:

where the indices 1-4 count consecutive sitgther clock-
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4 R e e T way in which the phase breaks lattice symmetries—it is two-
I ] fold degenerate, and invariant under operations which map
the alternating A and B plaquette sublattice onto
themselves—suggest the plaquette phase of the Q6VM is an
Ising analog of the S{2) valence-bond crystal of resonating
plaguettes. Such a phase has been proposed in the context of
the square lattice QDNP Furthermore, the ground state of
the Heisenberg-model on a checkerboard lattice is a valence
bond crystal of S(R) singlets formed on alternate empty
plaquettes® with a possibility of an adiabatic continuity be-
tween the ground state of theXZ and SUW2) symmetric
N Heisenberg modefs.
1 For V>t the ground state is the highly degenerate mani-
~ 11 fold of “isolated” states with no flippable plaquettes. They
-0.36 -0.34 -0.32] are eigenstates with 0 energy for any valuevéf, and be-
RN R ER A S come the ground state for>t.1® The prototype of an iso-

=1 -05 0 0.5 1 1.5 lated state is the collinear configuration shown in Fig. 1. In

Vit this reference state all vertex arrows point from left to right
or from top to bottom. Inverting the direction of the arrows
pyrochlore-slab with periodic boundary conditions as a function ofalong an arbitrary number of lines, subject to the constraint

V/t, obtained by numerical diagonalization. We have shown the firs{halt ?Ildofttflem _T_‘L? ?'thgr ?orlzontal gr ;/etrtltéal, creates nehv_v h
eight levels. Inset: the first two excited states crossVatt ISolated states. This leads o a ground state degeneracy whic

=-0.3437(the axes are the same as of the main)plot grows as 42°-1) for regularly shaped clusters, whepe
~N. In these states, the direction of arrows along either the
horizontal or vertical lines is long-range ordered, but quan-
Hre=t2 (| O) =[O DO =(O). (4)  tum effects none the less fail to select a ground state with
. finite degeneracy. We refer to this phase of the Q6VM as
“quasicollinear.” Finally, since the transition between the
Following Rokhsar and KivelsofRK),® we can construct a quasicollinear phase and the resonating plaquette phase takes
zero eigenvalue state of thiégx by taking the linear combi- place through the softening of specific excitati@liscussed
nation of all the states in a given topological sector with thebelow), we identify it as second order.
same amplitude. Since this state is annihilated by the positive Excitations: First let us consider the nature of excitations
semidefiniteH gy, it must be a ground state. As in the QDM, at fixedS$=0. A state withn flippable plaquettes has a diag-
static correlations can be computed exactly at this point. Likeonal matrix elementV and is connected ta other states.
the correlation functions of the 6VM, they decay algebra-Gerschgorin's theorem places a bouht} — ;| <Z|H;| on
ically with distance. the separation of théth eigenvalueg; from the diagonal
At the RK point, kinetic, and potential energy are per-matrix elementH;. In the case in point, this bound jaV
fectly balanced; in the plaquette phase kinetic energy domi=e;| <nt, or n(V-t) <e; <n(V+t). The smallest energy in an
nates, and resonating plagquettes repel one another so as gaiitrary topological sector is thus larger th¥m-t, which
the maximum kinetic energy. The resulting state is essen- gives a lower bound on the value of the gap in the quasicol-
tially a Peierls-like distortion of the RK state in which only A linear phase fo >t. This above argument permits a gapless
(B) sublattice plaquettes resonafé, (|O)+|®)). The  spectrum at the RK point=t. In fact it is possible to ex-

4}

Ef

—12l

FIG. 3. (Color onling Energy level diagram of the 32-site

Ae plicitly construct a family of states with a gap that vanishes
=3 at the RK point, as shown in Fig(&: the energy spectrum
0345 ¢ a2 of this particular excitation forms a continuum betweén 2
035 | 3% ] -2t and 2/+2t.
A Now let us consider spin excitations wisf==1. If we
L 08y 40 ] neglect virtual processes at ordl%g,/.]z, and the possibility
» 036 | A ] of entropic confinement at finite temperature, these propa-
/,er’" 52 gate as independent fractional excitatiér@uantum effects
-0365 1 e ] may, or may not, act to confine these excitations, depending
0a7t 7 ] on the type of correlations present in the ground state they
select. The Néel ground state has a twofold ground state
-0.375 o 0,008 001 0015 degeneracy, and separating the topological defects created by

N2 flipping a spin creates a string of unflippable plaquettes. This
leads to confinement of spinons, and the low lying spin ex-
FIG. 4. Estimate of the phase boundary between the Néel an@itations of the Néel phase of our model have the same quan-
plaquette phases. Empirically, the values\6f where the level tum numbers as a spin wave. On general grounds, we expect
crossings occur scale as —0.3727+ N8¥2 Values are shown for the same to be true of the plaquette phase.
32, 36, 40, 52, and 64 pyrochlore-slab sites. The manifold of isolated states selected\bgansupport
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fined to thex andy directions, but by scattering off one
another, a pair of spinons can explore the full two dimen-
sional space of the lattice. Whether a more general class of
deconfined spinon excitation becomes possible as one ap-
proaches the RK point remains an open question. We also
note that while fixing the boundary conditions will lift the
degeneracy of the isolated state manifold, it need not affect
the arguments for spinon deconfinement presented above.
Conclusions: We have established that, as a function of
the chemical potential for “flippable plaquettes” accessible to
FIG. 5. (Color onling (a) A “leapfrog” excitation in the quasi- cyclic exchange, th&XZ Heisenberg model on a checker-

collinear phase. Two flippable plagueti@enoted with circlesare ~ 0ard lattice exhibits Néel, resonating plaquette and quasi-
created by reversing the arrows of the collinear reference state on@pllinear phases. If virtual processes:é;/Jz are ignored,

line with a single one-step kink. The motion of the pair of flippable Spinon excitations in th&XZ Heisenberg model are decon-
plaquettes is equivalent to a one-dimensional hopping model witliined. We have shown explicitly that a subset of spinon
an energy spectrum(k) =2V+ 2t cosk, wherek is an effective one-  excitations—those associated with isolated states—remain
dimensional momentuntb) and(c): The deconfined spinons in the deconfined even when these quantum effects are taken into
collinear phaseblack dotg. Note, that spinons hop so as to stay account. Finally, we mention that the equivalents of both the
within a given sublattice of thebipartite) square lattice. “leap-frog” and spinon excitations can also be constructed in

. . _ _ the square-lattice QDM fov >1.19
deconfined spinons, however. Since no new flippable

plaquettes are introduced into isolated states by flipping a The authors are pleased to acknowledge helpful discus-
single spin, and the pair of topological defects created byions with P. Fazekas, P. Fulde, R. Moessner, V. Pasquier, E.
flipping a single spin can be separated without creating neiRunge, D. Serban, A. StitM. Roger, P. Sindzingre, and P.
flippable plaquettes, spinons are deconfined. An example of Wiegmann. We thank the support of the Hungarian OTKA
pair of deconfined spinon excitations is shown in Figh)5 T038162 and T037451, EU RTN “He Ill Neutrons” and the
and c). For V> J,,>t, spinon motion is movement is con- guest program of MPI-PKS Dresden.
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